3.32 \(\int \cot ^5(c+d x) (a+i a \tan (c+d x))^3 \, dx\)

Optimal. Leaf size=108 \[ -\frac{3 i a^3 \cot ^3(c+d x)}{4 d}+\frac{2 a^3 \cot ^2(c+d x)}{d}+\frac{4 i a^3 \cot (c+d x)}{d}+\frac{4 a^3 \log (\sin (c+d x))}{d}-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}+4 i a^3 x \]

[Out]

(4*I)*a^3*x + ((4*I)*a^3*Cot[c + d*x])/d + (2*a^3*Cot[c + d*x]^2)/d - (((3*I)/4)*a^3*Cot[c + d*x]^3)/d + (4*a^
3*Log[Sin[c + d*x]])/d - (Cot[c + d*x]^4*(a^3 + I*a^3*Tan[c + d*x]))/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.187054, antiderivative size = 108, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {3553, 3591, 3529, 3531, 3475} \[ -\frac{3 i a^3 \cot ^3(c+d x)}{4 d}+\frac{2 a^3 \cot ^2(c+d x)}{d}+\frac{4 i a^3 \cot (c+d x)}{d}+\frac{4 a^3 \log (\sin (c+d x))}{d}-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}+4 i a^3 x \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^5*(a + I*a*Tan[c + d*x])^3,x]

[Out]

(4*I)*a^3*x + ((4*I)*a^3*Cot[c + d*x])/d + (2*a^3*Cot[c + d*x]^2)/d - (((3*I)/4)*a^3*Cot[c + d*x]^3)/d + (4*a^
3*Log[Sin[c + d*x]])/d - (Cot[c + d*x]^4*(a^3 + I*a^3*Tan[c + d*x]))/(4*d)

Rule 3553

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(a^2*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] +
 Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(m
- 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /; Fr
eeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[
n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3591

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2
 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3531

Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((a*c +
 b*d)*x)/(a^2 + b^2), x] + Dist[(b*c - a*d)/(a^2 + b^2), Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \cot ^5(c+d x) (a+i a \tan (c+d x))^3 \, dx &=-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}-\frac{1}{4} \int \cot ^4(c+d x) (a+i a \tan (c+d x)) \left (-9 i a^2+7 a^2 \tan (c+d x)\right ) \, dx\\ &=-\frac{3 i a^3 \cot ^3(c+d x)}{4 d}-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}-\frac{1}{4} \int \cot ^3(c+d x) \left (16 a^3+16 i a^3 \tan (c+d x)\right ) \, dx\\ &=\frac{2 a^3 \cot ^2(c+d x)}{d}-\frac{3 i a^3 \cot ^3(c+d x)}{4 d}-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}-\frac{1}{4} \int \cot ^2(c+d x) \left (16 i a^3-16 a^3 \tan (c+d x)\right ) \, dx\\ &=\frac{4 i a^3 \cot (c+d x)}{d}+\frac{2 a^3 \cot ^2(c+d x)}{d}-\frac{3 i a^3 \cot ^3(c+d x)}{4 d}-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}-\frac{1}{4} \int \cot (c+d x) \left (-16 a^3-16 i a^3 \tan (c+d x)\right ) \, dx\\ &=4 i a^3 x+\frac{4 i a^3 \cot (c+d x)}{d}+\frac{2 a^3 \cot ^2(c+d x)}{d}-\frac{3 i a^3 \cot ^3(c+d x)}{4 d}-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}+\left (4 a^3\right ) \int \cot (c+d x) \, dx\\ &=4 i a^3 x+\frac{4 i a^3 \cot (c+d x)}{d}+\frac{2 a^3 \cot ^2(c+d x)}{d}-\frac{3 i a^3 \cot ^3(c+d x)}{4 d}+\frac{4 a^3 \log (\sin (c+d x))}{d}-\frac{\cot ^4(c+d x) \left (a^3+i a^3 \tan (c+d x)\right )}{4 d}\\ \end{align*}

Mathematica [B]  time = 1.34101, size = 254, normalized size = 2.35 \[ \frac{a^3 \csc \left (\frac{c}{2}\right ) \sec \left (\frac{c}{2}\right ) \csc ^4(c+d x) \left (12 i d x \sin (c)+8 i d x \sin (c+2 d x)+5 \sin (c+2 d x)-8 i d x \sin (3 c+2 d x)-5 \sin (3 c+2 d x)-2 i d x \sin (3 c+4 d x)+2 i d x \sin (5 c+4 d x)+13 i \cos (c+2 d x)+7 i \cos (3 c+2 d x)-5 i \cos (3 c+4 d x)+6 \sin (c) \log \left (\sin ^2(c+d x)\right )+4 \sin (c+2 d x) \log \left (\sin ^2(c+d x)\right )-4 \sin (3 c+2 d x) \log \left (\sin ^2(c+d x)\right )-\sin (3 c+4 d x) \log \left (\sin ^2(c+d x)\right )+\sin (5 c+4 d x) \log \left (\sin ^2(c+d x)\right )+8 \sin (c)-15 i \cos (c)\right )}{16 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^5*(a + I*a*Tan[c + d*x])^3,x]

[Out]

(a^3*Csc[c/2]*Csc[c + d*x]^4*Sec[c/2]*((-15*I)*Cos[c] + (13*I)*Cos[c + 2*d*x] + (7*I)*Cos[3*c + 2*d*x] - (5*I)
*Cos[3*c + 4*d*x] + 8*Sin[c] + (12*I)*d*x*Sin[c] + 6*Log[Sin[c + d*x]^2]*Sin[c] + 5*Sin[c + 2*d*x] + (8*I)*d*x
*Sin[c + 2*d*x] + 4*Log[Sin[c + d*x]^2]*Sin[c + 2*d*x] - 5*Sin[3*c + 2*d*x] - (8*I)*d*x*Sin[3*c + 2*d*x] - 4*L
og[Sin[c + d*x]^2]*Sin[3*c + 2*d*x] - (2*I)*d*x*Sin[3*c + 4*d*x] - Log[Sin[c + d*x]^2]*Sin[3*c + 4*d*x] + (2*I
)*d*x*Sin[5*c + 4*d*x] + Log[Sin[c + d*x]^2]*Sin[5*c + 4*d*x]))/(16*d)

________________________________________________________________________________________

Maple [A]  time = 0.053, size = 98, normalized size = 0.9 \begin{align*} 4\,i{a}^{3}x+{\frac{4\,i{a}^{3}\cot \left ( dx+c \right ) }{d}}+{\frac{4\,i{a}^{3}c}{d}}+2\,{\frac{{a}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{2}}{d}}+4\,{\frac{{a}^{3}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{i{a}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{3}}{d}}-{\frac{{a}^{3} \left ( \cot \left ( dx+c \right ) \right ) ^{4}}{4\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^5*(a+I*a*tan(d*x+c))^3,x)

[Out]

4*I*a^3*x+4*I*a^3*cot(d*x+c)/d+4*I/d*a^3*c+2*a^3*cot(d*x+c)^2/d+4*a^3*ln(sin(d*x+c))/d-I/d*a^3*cot(d*x+c)^3-1/
4/d*a^3*cot(d*x+c)^4

________________________________________________________________________________________

Maxima [A]  time = 2.21579, size = 127, normalized size = 1.18 \begin{align*} -\frac{-16 i \,{\left (d x + c\right )} a^{3} + 8 \, a^{3} \log \left (\tan \left (d x + c\right )^{2} + 1\right ) - 16 \, a^{3} \log \left (\tan \left (d x + c\right )\right ) + \frac{-16 i \, a^{3} \tan \left (d x + c\right )^{3} - 8 \, a^{3} \tan \left (d x + c\right )^{2} + 4 i \, a^{3} \tan \left (d x + c\right ) + a^{3}}{\tan \left (d x + c\right )^{4}}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+I*a*tan(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/4*(-16*I*(d*x + c)*a^3 + 8*a^3*log(tan(d*x + c)^2 + 1) - 16*a^3*log(tan(d*x + c)) + (-16*I*a^3*tan(d*x + c)
^3 - 8*a^3*tan(d*x + c)^2 + 4*I*a^3*tan(d*x + c) + a^3)/tan(d*x + c)^4)/d

________________________________________________________________________________________

Fricas [A]  time = 2.14402, size = 478, normalized size = 4.43 \begin{align*} -\frac{2 \,{\left (12 \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} - 23 \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} + 18 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} - 5 \, a^{3} - 2 \,{\left (a^{3} e^{\left (8 i \, d x + 8 i \, c\right )} - 4 \, a^{3} e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, a^{3} e^{\left (4 i \, d x + 4 i \, c\right )} - 4 \, a^{3} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{3}\right )} \log \left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )\right )}}{d e^{\left (8 i \, d x + 8 i \, c\right )} - 4 \, d e^{\left (6 i \, d x + 6 i \, c\right )} + 6 \, d e^{\left (4 i \, d x + 4 i \, c\right )} - 4 \, d e^{\left (2 i \, d x + 2 i \, c\right )} + d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+I*a*tan(d*x+c))^3,x, algorithm="fricas")

[Out]

-2*(12*a^3*e^(6*I*d*x + 6*I*c) - 23*a^3*e^(4*I*d*x + 4*I*c) + 18*a^3*e^(2*I*d*x + 2*I*c) - 5*a^3 - 2*(a^3*e^(8
*I*d*x + 8*I*c) - 4*a^3*e^(6*I*d*x + 6*I*c) + 6*a^3*e^(4*I*d*x + 4*I*c) - 4*a^3*e^(2*I*d*x + 2*I*c) + a^3)*log
(e^(2*I*d*x + 2*I*c) - 1))/(d*e^(8*I*d*x + 8*I*c) - 4*d*e^(6*I*d*x + 6*I*c) + 6*d*e^(4*I*d*x + 4*I*c) - 4*d*e^
(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

Sympy [A]  time = 4.50298, size = 172, normalized size = 1.59 \begin{align*} \frac{4 a^{3} \log{\left (e^{2 i d x} - e^{- 2 i c} \right )}}{d} + \frac{- \frac{24 a^{3} e^{- 2 i c} e^{6 i d x}}{d} + \frac{46 a^{3} e^{- 4 i c} e^{4 i d x}}{d} - \frac{36 a^{3} e^{- 6 i c} e^{2 i d x}}{d} + \frac{10 a^{3} e^{- 8 i c}}{d}}{e^{8 i d x} - 4 e^{- 2 i c} e^{6 i d x} + 6 e^{- 4 i c} e^{4 i d x} - 4 e^{- 6 i c} e^{2 i d x} + e^{- 8 i c}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**5*(a+I*a*tan(d*x+c))**3,x)

[Out]

4*a**3*log(exp(2*I*d*x) - exp(-2*I*c))/d + (-24*a**3*exp(-2*I*c)*exp(6*I*d*x)/d + 46*a**3*exp(-4*I*c)*exp(4*I*
d*x)/d - 36*a**3*exp(-6*I*c)*exp(2*I*d*x)/d + 10*a**3*exp(-8*I*c)/d)/(exp(8*I*d*x) - 4*exp(-2*I*c)*exp(6*I*d*x
) + 6*exp(-4*I*c)*exp(4*I*d*x) - 4*exp(-6*I*c)*exp(2*I*d*x) + exp(-8*I*c))

________________________________________________________________________________________

Giac [A]  time = 1.53129, size = 244, normalized size = 2.26 \begin{align*} -\frac{3 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 24 i \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 108 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1536 \, a^{3} \log \left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + i\right ) - 768 \, a^{3} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) + 456 i \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \frac{1600 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 456 i \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 108 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 24 i \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 3 \, a^{3}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4}}}{192 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^5*(a+I*a*tan(d*x+c))^3,x, algorithm="giac")

[Out]

-1/192*(3*a^3*tan(1/2*d*x + 1/2*c)^4 - 24*I*a^3*tan(1/2*d*x + 1/2*c)^3 - 108*a^3*tan(1/2*d*x + 1/2*c)^2 + 1536
*a^3*log(tan(1/2*d*x + 1/2*c) + I) - 768*a^3*log(abs(tan(1/2*d*x + 1/2*c))) + 456*I*a^3*tan(1/2*d*x + 1/2*c) +
 (1600*a^3*tan(1/2*d*x + 1/2*c)^4 - 456*I*a^3*tan(1/2*d*x + 1/2*c)^3 - 108*a^3*tan(1/2*d*x + 1/2*c)^2 + 24*I*a
^3*tan(1/2*d*x + 1/2*c) + 3*a^3)/tan(1/2*d*x + 1/2*c)^4)/d